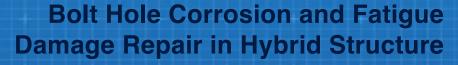
Reinventing the Future of Cold Expansion™


Authors:

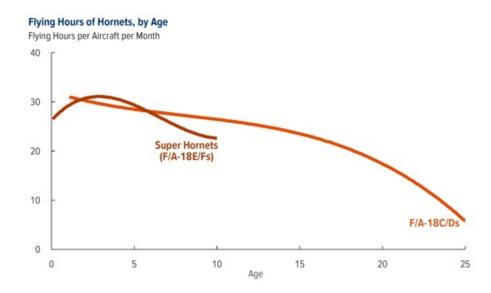
Jude Restis
Doug Glenn
Dr. Matthew Kokaly
Dale Manning

Vertical Flight Society Forum 79
Presented by Dale Manning
May 2023

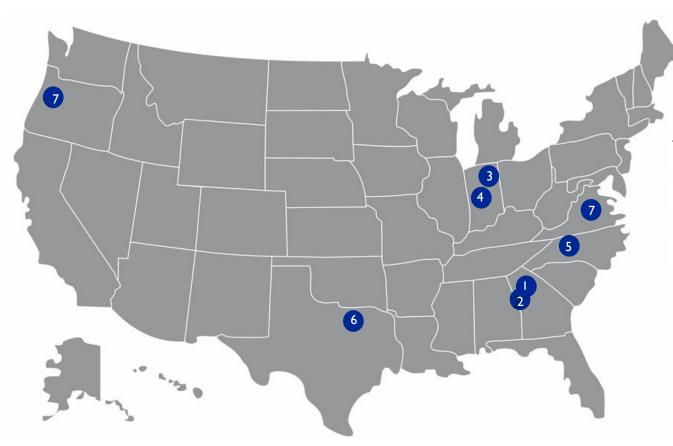
Galvanic Corrosion of Hybrid Structure

Widespread galvanic corrosion damage experienced on multiple programs with composite over aluminum in the presence of moisture

Navy IG Report As reported in Navy Times By Diana Stancy Correll Oct. 5, 2021


"Between FY17 and FY20, corrosion costs accounted for \$2,086,796,553, amounting to 29.4 percent of the total maintenance cost for [F-18 C-G] aircraft."

From "In-service Corrosion Issues in Sustainment of Navy Aircraft" briefing, R. Mendoza, Aug 2012


F-18: Canary in the Coal Mine

- CBO Study (Feb 23): Super Hornet Availability at 10 years are 18% less than Older F/A-18 Models.
- "DoN noted that many factors contributed to the differences in availability... including the <u>greater</u> <u>levels of galvanic corrosion</u> arising from the greater use of composite metals in Super Hornets.
- V-22 and CH-53K have similar material stack-ups

Corporate Overview

PART WORKS

IS A WHOLLY OWNED SUB OF PHX HOLDINGS

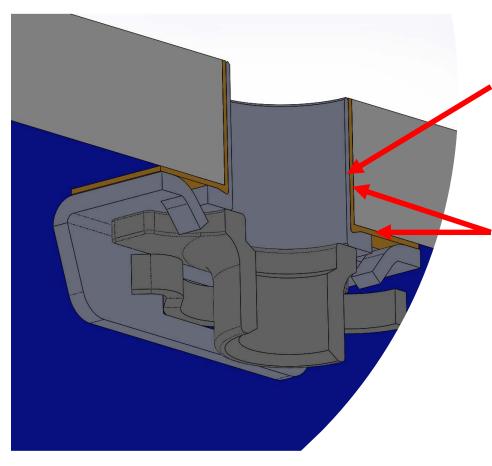
- PHX Holdings
 Atlanta, Georgia
- 2 PartWorks PSG* Plants 1& 2 Atlanta, Georgia
- 3 PSG* Plant 3 Indiana Fort Wayne, Indiana
- 4 GTC Machining
 Indianapolis, Indiana
- **5** PSG* Plant 4 NC Charlotte, NC
- 6 PSG* Plant 5 TX
 Dallas/Ft Worth, TX
- 7 PartWorks
 Field Offices
 Alexandria, VA
 Seattle, WA

Combined annual revenue > \$125M > 300+ employees, 400,000+ sq. feet GTC is AS9100D, ITAR

*PSG=Phoenix Stamping Group: ISO 9001-2015

USAF Test Program

Carried out in Conjunction with:

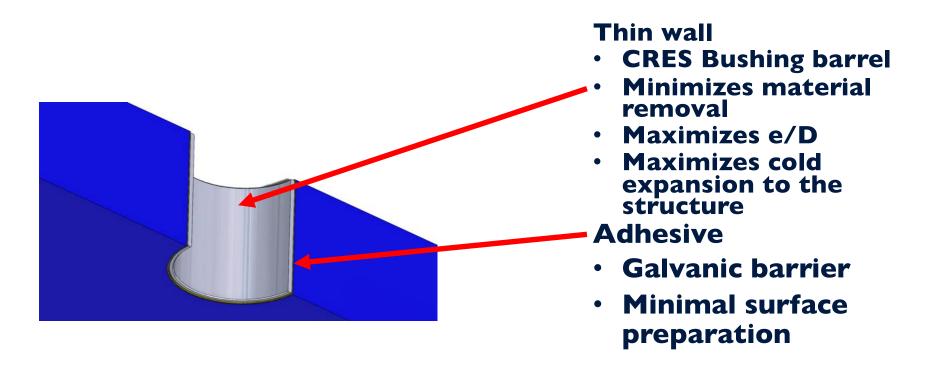

University of Dayton Research Institute (UDRI) Goose Meadow Engineering at Montana State University Georgia Tech

- Developed methodology to recreate fleet level corrosion in laboratory setting
- Assess fatigue performance of repair to corroded and uncorroded baselines
- Create FEA models for design evaluation and validate models by comparison to DIC and X-ray diffraction.
- Develop Adhesive to prevent or arrest corrosion and ease installation
- Develop methods to seamlessly track repairs and record relative QA data

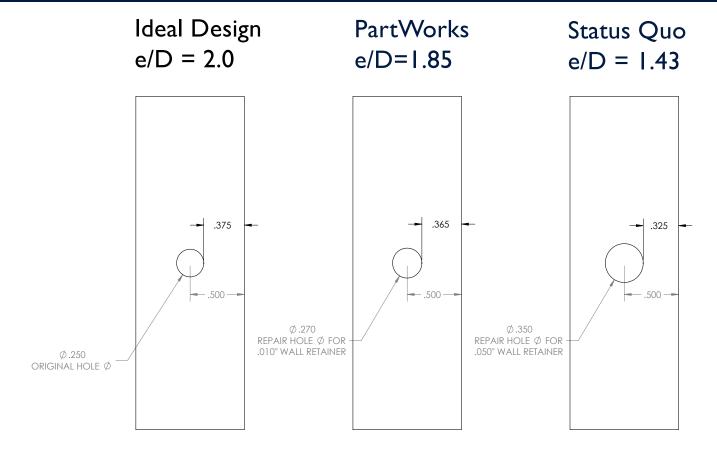
Project Goals

- Simplified / Standardized Repair
- Preserve edge margin
- Provide fatigue life benefit
- Protect against undetected or missed damage
- Reduce analysis time
- Increase fleet readiness
- Allow credit for engineering residual stress
- Save cost

PartWorks Repair - Rivetless Nut Plate


Thin wall

- CRES Retainer barrel
- Minimizes material removal
- Maximizes e/D
- Maximizes cold expansion to the structure


Pre-applied Adhesive (Development item)

- Maximizes torque-out and push out
- Galvanic barrier
- Minimal surface preparation

PartWorks Bushing Repair

Preserve Edge Margin

USAF Test Program

Corrosion

Fatigue

Corrosion Protocol Development

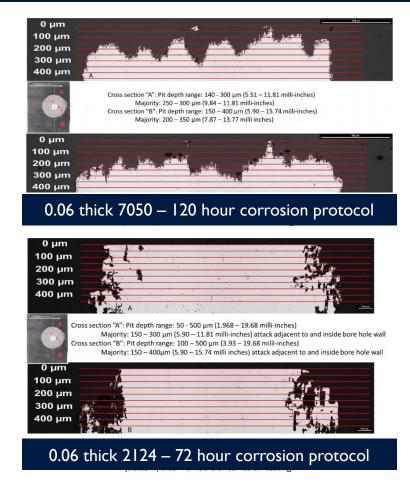
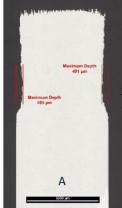
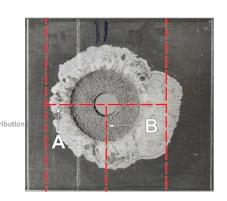


Figure 6 (L) Representative image of a multihole protocol development specimen taped off to expose one bore hole for corrosion testing; (C) Representative image of a single hole protocol development specimen taped off to expose one bore hole for corrosion testing; (R) Representative image of a dog bone fatigue test specimen taped off to expose the bore hole for corrosion testing (note: only top 2/3 of dog bone visible in scan image, although entire dog

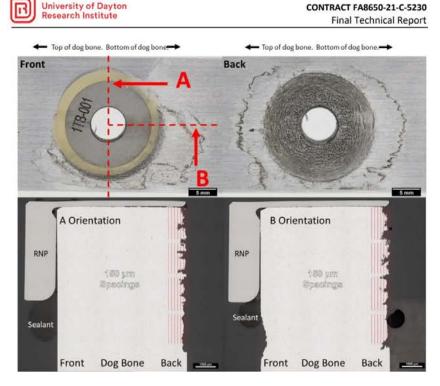
- NaCl and NaAlO2 solution
- Dogbones masked with electroplaters tape
- 0.25 in dia. hole, 0.75 inch dia. surface exposure each side of dogbone
- Solution biased at 700mV

Corrosion Protocol Development



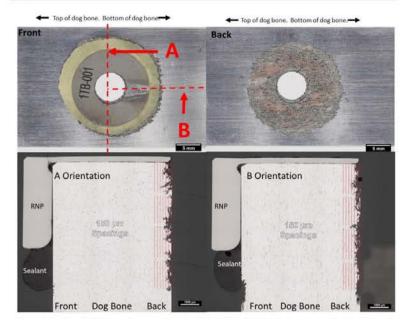

Corrosion Protocol Development

Metallographs of Plate Surface and Fastener Hole Wall



Adhesive - Galvanic Barrier

7050 material - 120 hour corrosion protocol


Goal

- Contaminant tolerant
- Pre-applied (murphy proof for user)
- Cold expansion compatible
- Sufficient mechanical properties
- Dielectric Insulator
- Impervious to moisture
- Permanent installation

Galvanic Barrier

CONTRACT FA8650-21-C-5230 Final Technical Report

2124 material – 120 hour corrosion protocol

CONTRACT FA8650-21-C-5230 Final Technical Report

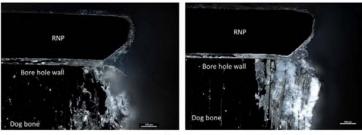
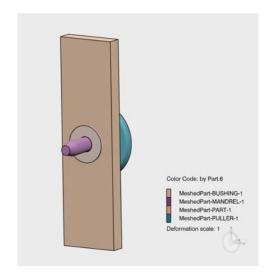
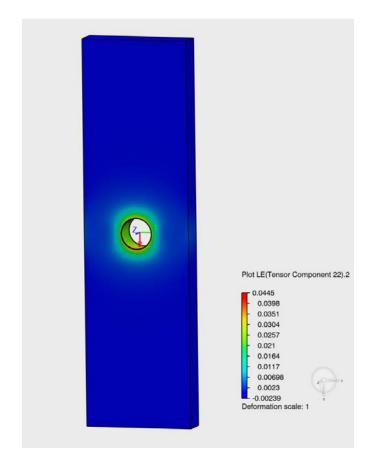


Figure 24. Dark field image of RNP-sealant/bore hole wall interface on back of dog bone. (Left)
Orientation "A". (Right) Orientation "B".

Analytical and Experimental Methods

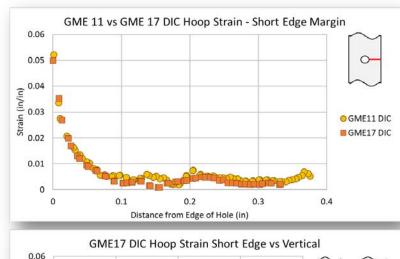

FEA

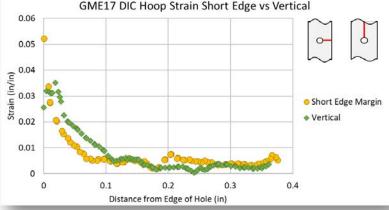

DIC

X-ray Diffraction

FEA - Process Simulation

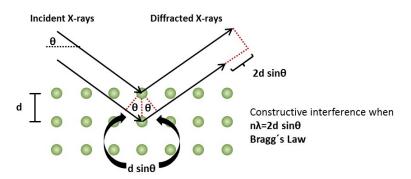
- 3-D Pull Through Model
- Elastic-Plastic Properties of the Material
- Contact Modeled
- Explicit Method

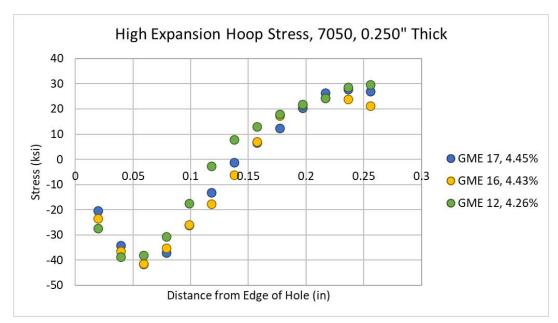



In Situ Process Validation

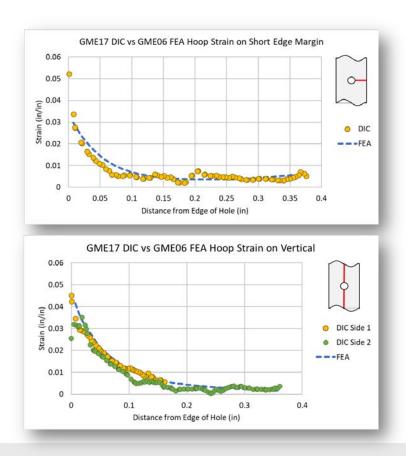
Residual Strain Visualization with DIC

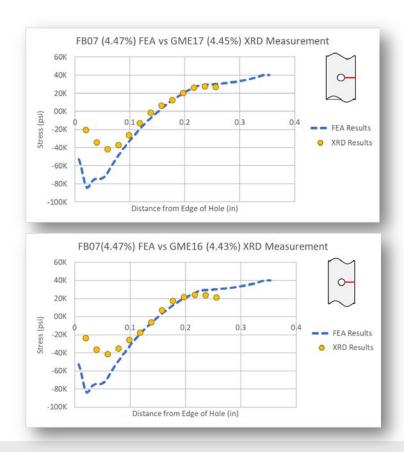
- Image Capture: Before, during and after repair
 - On-tool image capture
- DIC used to correlate residual strain with FEA
- Will also be correlated to X-Ray diffraction



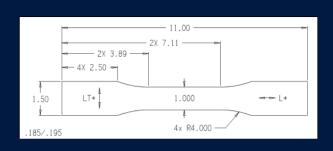


X-Ray Diffraction





USAF Test Program


• Correlation – FEA, Digital Image and X-Ray Diffraction

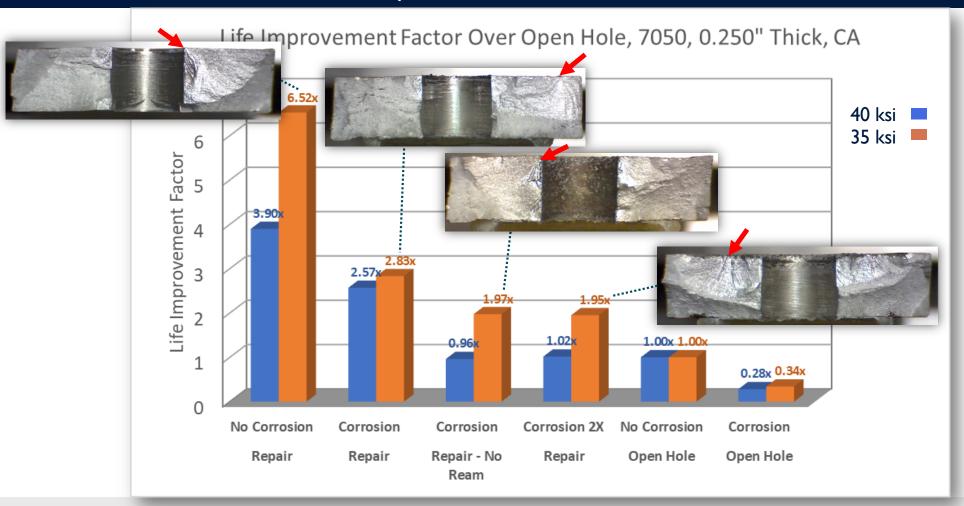
Fatigue Test Program

1	Load Spectrum	Parent material
	F-35	7050-T7451
1	F-35	2124-T8151
1	F-22	2124-T8151
\	F-22	7050-T7451

Baseline – open hole, no corrosion	
Corroded - open hole	
Repair - no corrosion	
Corroded, reamed repaired	
Corroded, reamed, repaired, corroded	7
Corroded, repaired (no ream)	

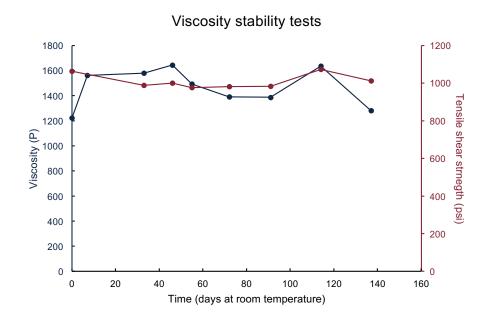
Repaired when new, cycle for 10K cycles, then corrode and cut coupon in half to look for potential corrosion between bore of hole and barrel of thin wall bushing

Fatigue Testing F-35 Spectrum


Fatigue Testing F-22 Spectrum

Fatigue Testing Constant Amplitude

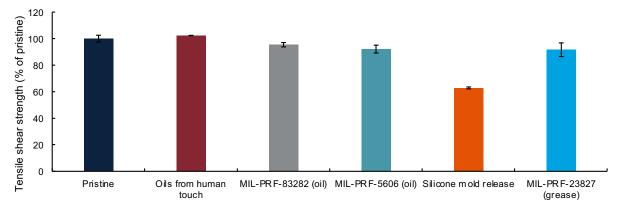
Life Improvement Factor



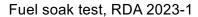
Adhesive Development

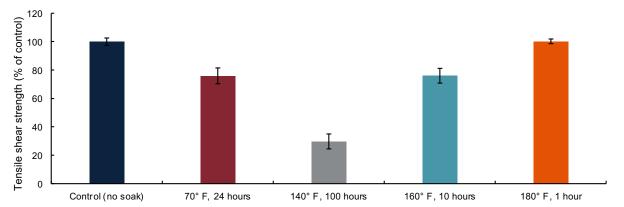
- Room Temp Stability prior to installation
- Chemical and Contamination Resistance
- Fuel and Water Resistance
- Temperature resistance

Adhesive - Stability at Room Temperature

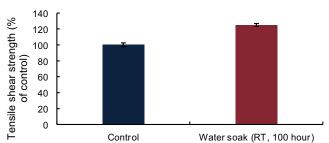

23° C	30° C	40° C	Viscosity (P)	LSS (psi)
0 days	0 days	0 days	1222	1063 ± 34
7 days	4 days	2 days	1563	
33 days	20 days	10 days	1581	988 ± 60
46 days	28 days	14 days	1645	1000 ± 29
55 days	34 days	17 days	1493	976 ± 146
72 days	44 days	22 days	1392	982 ± 48
91 days	56 days	28 days	1387	984 ± 59
114 days	70 days	35 days	1635	1073 ± 68
137 days	84 days	42 days	1280	1013 ± 15

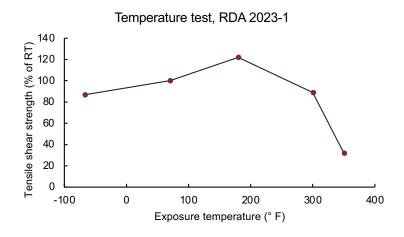
Adhesive - Chemical and Contamination Resistance


Batch	10006-61-A1	10006-61-A2	10006-61-A3	10006-61-A5	10006-61-A42	10006-64-A2
Formulation	RDA 2023-1	RDA 2023-1	RDA 2023-1	RDA 2023-1	RDA 2023-1	RDA 2023-1
Contaminant	Pristine	Oils from human touch	MIL-PRF-83282 (oil)	MIL-PRF-5606 (oil)	Silicone mold release	MIL-PRF-23827 (grease)
LSS (psi)	1219 ± 31	1248 ± 1	1163 ± 20	1123 ± 36	766 ± 9	1117 ± 63
LSS (% of pristine)	100	102	95	92	63	92

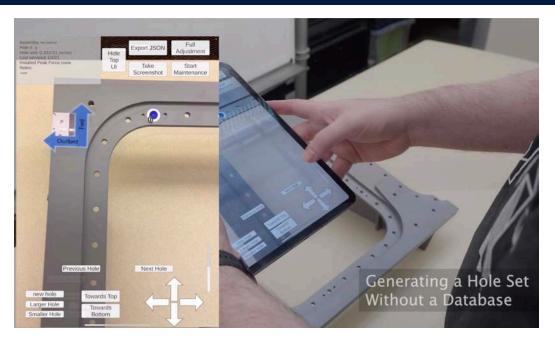

Contamination testing, RDA 2023-1

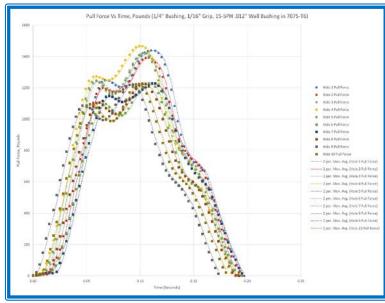
Adhesive – Fuel and Water Resistance


Batch	10006-63-A1	10006-63-A2	10006-63-A3	10006-63-A4	10006-63-A5
Formulation	RDA 2023-1	RDA 2023-1	RDA 2023-1	RDA 2023-1	RDA 2023-1
Exposure	Control (no soak)	70° F, 24 hours	140° F, 100 hours	160° F, 10 hours	180° F, 1 hour
LSS (psi)	1271 ± 33	965 ± 71	378 ± 67	966 ± 66	1274 ± 21
LSS (% of control)	100	76	30	76	100



	Control	Water soak (RT, 100 hour)		
LSS (psi)	1219 ± 31	1523 ± 31		
LSS (% of control)	100	125		




Temperature resistance

Batch	10006-62-A1	10006-61-A1	10006-62-A3	10006-62-A33	10006-62-A4
Formulation	Formulation RDA 2023-1 R		RDA 2023-1	RDA 2023-1	RDA 2023-1
Exposure	Exposure -67° F, 2 hours Room te		180° F, 2 hours	250° F, 2 hours	350° F, 2 hours
LSS (psi)	1058 ± 2	1219 ± 31	1492 ± 38	1080 ± 36	390 ± 47
LSS (% of RT)	87	100	122	89	32

Augmented Reality for Repair Tracking

- Record data real-time without operator intervention
- Validate correct hole repaired with right tooling/ fastener
- Simple set up with out complex calibration process
- Integrated scanning and mapping holes to database
- Compatible with phone/tablet/glasses/goggles

Project Goals

- ✓ Simplified / Standardized Repair
- √ Preserve edge margin
- ✓ Provide fatigue life benefit
- ✓ Protect against undetected or missed damage
- ✓ Reduce analysis time
- ✓ Increase fleet readiness
- ✓ Allow credit for engineering residual stress
- ✓ Save cost

Considerations for New Production

F-18 program spends \$690M / year on corrosion (30% of total maintenance budget)

Hybrid structure of some of the newest aircraft have similar corrosion problems

Prevent today's corrosion problems from becoming tomorrow's.

PartWorks' solution incorporated in new production can mitigate corrosion in fastener holes

Thank you

partworks.com